منابع مشابه
Spheres and hyperbolic spaces
The group-invariant geometry on real and complex n-balls is hyperbolic geometry, in the sense that there are infinitely many straight lines (geodesics) through a given point not on a given straight line, thus contravening the parallel postulate for Euclidean geometry. We will not directly consider geometric notions, since the transitive group action determines structure in a more useful form. S...
متن کاملOrbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملOn Hyperbolic Groups with Spheres as Boundary
Let G be a torsion-free hyperbolic group and let n ≥ 6 be an integer. We prove that G is the fundamental group of a closed aspherical manifold if the boundary of G is homeomorphic to an (n − 1)-dimensional sphere.
متن کاملOn the Regularity of Averages over Spheres for Kinetic Transport Equations in Hyperbolic Sobolev Spaces
We study the smoothing effect of averaging over spheres for solutions of kinetic transport equations in hyperbolic Sobolev spaces.
متن کاملOn characterizations of hyperbolic harmonic Bloch and Besov spaces
We define hyperbolic harmonic $omega$-$alpha$-Bloch space $mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and characterize it in terms of $$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}},$$ where $0leq gammaleq 1$. Similar results are extended to little $omega$-$alpha$-Bloch and Besov spaces. These obtained...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Теория вероятностей и ее применения
سال: 2012
ISSN: 0040-361X,2305-3151
DOI: 10.4213/tvp4465